Optimizing pump-and-treat method by considering important remediation objectives

Author:

Zeynali Mohammad Javad,Pourreza-Bilondi MohsenORCID,Akbarpour Abolfazl,Yazdi Jafar,Zekri Slim

Abstract

AbstractThe efficiency of groundwater remediation by pump-and-treat (PAT) method is affected by several components. The most important of these components include the pumping wells location, pumping rate, and remediation period. In this research, hybrid optimization-simulation models were developed to find the appropriate groundwater remediation strategy by PAT method. The GA-FEM and NSGA-II-FEM models were used to solve four optimization problems for a hypothetical and real aquifer. These optimization problems were investigated from one objective problem to a four-objectives problem. In the multi-objective problems, in each step, one objective function is added to the previous set of objective functions. In the one-objective case, the objective function was defined as minimizing the contaminant concentration by pumping at a constant rate, while in the two-objectives problem, minimizing the drawdown of groundwater head by pumping at a constant rate was added. In the three-objectives problem, the pumping rate was variable and the mean pumping rate from all the wells is minimized. Finally, minimizing the remediation period is added in the four-objective case. The results indicated that locating the pumping wells in the path of the contaminant flow and close to the source improves the efficiency of the PAT system. The wells with higher pumping rates would be in the path of contamination flow and the wells with lower pumping rates should be located in nodes near the Dirichlet boundary. It is concluded that the remediation period in the hypothetical and real aquifer cannot be less than almost 3000 and 760 days, respectively. Finally, it can be said, the most important component in choosing the proper PAT strategy is the proper location of pumping wells.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3