Carrier-to-Noise-Threshold Filtering on Off-Shore Wind Lidar Measurements

Author:

Gryning Sven-Erik,Floors RogierORCID

Abstract

Wind lidar observations are characterized by a Carrier-to-Noise-Ratio that is often used to filter the observations. The choice of the Carrier-to-Noise-Ratio threshold value for the wind lidar observations is found to have an effect on the climatological wind speed distribution in such a way that when the Carrier-to-Noise-Ratio (CNR) threshold value is increased the wind speed distribution is shifted to higher values. Based on one year of observations carried out with a wind lidar from 126 m to 626 m height at the FINO3 (Forschungsplattform in Nord- und Ostsee Nr. 3) research platform in the North Sea, the effect that the choice of the Carrier-to-Noise threshold value has on the climatology of the wind speed and direction as well as the wind power density in relation to wind energy is illustrated and discussed. In the one-year data set considered here it is found that for thresholds larger than −29 dB, the mean wind speed and wind rose measured by the wind lidar become a function of the threshold value, and for values smaller than ~ −29 dB further decrease of the Carrier-to-Noise-Ratio threshold has a minor effect on the estimated mean wind speed and wind rose. The analysis of the data set from the North Sea shows that the limit for the Carrier-to-Noise-Ratio of the observations should be −29 dB or less to obtain a threshold independent estimate of the mean wind speed and wind rose. Alternatively, all valid observations should be used for the analysis. Although this study is specific for the conditions in the North Sea, we suggest that for a representative estimation of the wind resource with wind lidars, the effect of the CNR threshold filtering on the wind distribution should be studied when the recovery rate is less than 100%.

Funder

Strategiske Forskningsråd

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Global Wind Energy Outlook 2016,2016

2. Global Wind Report, Annual Market Update 2017,2018

3. European Wind Atlas;Troen,1988

4. Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula

5. A comparison of a mesoscale model with FINO measurements in the German Bight and the Baltic Sea;Durante;DEWI Mag.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3