Observed aerosol‐layer depth at Station Nord in the high Arctic

Author:

Gryning Sven‐Erik1ORCID,Batchvarova Ekaterina12,Floors Rogier1,Münkel Christoph3,Sørensen Lise Lotte4,Skov Henrik4

Affiliation:

1. DTU Wind and Energy Systems Technical University of Denmark Roskilde Denmark

2. Climate, Atmosphere and Water Research Institute at Bulgarian Academy of Sciences (CAWRI‐BAS) Sofia Bulgaria

3. Vaisala GmbH Hamburg Germany

4. iClimate, Arctic Research Center, Department of Environmental Science Aarhus University Aarhus Denmark

Abstract

AbstractThe depth of the aerosol layer at the Villum Research Station at Station Nord in the high Arctic is analysed based on 8 years of observations from a ceilometer and one full year from a wind lidar. The layer is of particular interest for aerosol process modelling and atmospheric chemistry studies. The depth of the aerosol layer is assigned to the inflection point in the attenuated backscatter profile by two methods; one is based on polynomial approximation of the profile and the other is direct numerical differentiation. The analysis is based on two types of hourly profiles; one consists of averaging the attenuated backscatter observations and the other by computing the median. Due to sporadic occurrence of outliers in the ranges around 50 m in the ceilometer observations, this part of the profile is not used in this study. Restricting the observations to heights above 100 m, the depths of the aerosol layer are found to be typically ≈230 m. It varies little between winter and summer, but the spread in the depth is larger during the winter as compared to summer. To extend the study of the aerosol‐layer depth below 100 m, a method is applied that combines the ceilometer measurements with the carrier‐to‐noise ratio from the wind lidar. The results are available for 2018 only, and they show aerosol‐layer depths below ≈80 m as well as depths around 230 m and they show few observations between ≈80 and ≈230 m. Near the ground, the observed backscatter exhibits a pronounced seasonal variation, having low values during the summer and high values during the winter. The strength of the seasonal variability decreases with height, especially above the aerosol‐layer depth, and is virtually absent at 1 km.

Funder

European Cooperation in Science and Technology

Publisher

Wiley

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3