Author:
Qu Yuwei,Han Ying,Yuan Jinhui,Zhou Xian,Yan Binbin,Wang Kuiru,Sang Xinzhu,Yu Chongxiu
Abstract
This paper proposes a novel liquid crystal-filled, dual core photonic crystal fiber polarization beam splitter (LC-DC-PCF PBS) based on the coupled mode theory of DC-PCF. The mode birefringence of odd and even modes, coupling lengths (CLs) of the X-polarization (X-pol) and Y-polarization (Y-pol), and the corresponding coupling length ratio (CLR) of the proposed LC-DC-PCF PBS filled without LC E7 and with LC E7 are compared. The change rules of the CLs of the X-pol and Y-pol and CLR of the proposed LC-DC-PCF with wavelengths for different cladding microstructure parameters were investigated. The relationships between the X-pol and Y-pol normalized output powers in core A of the proposed LC-DC-PCF PBS and the propagation length at the wavelength of 1.604 μm are discussed. Finally, by studying the change of extinction ratio (ER) with wavelength, the LC-DC-PCF PBS ER of 60.3 and 72.2 dB at wavelengths 1.386 and 1.619 μm are achieved, respectively. The final splitting length (LS) is 94 μm, and the splitting bandwidth is 349 nm (1.352~1.701 μm), covering the whole of the E + S + C + L + U communication bands. The proposed LC-DC-PCF PBS has good beam-splitting performance, such as ultra-short LS and ultra-wide splitting bandwidth, with potential applications in laser, sensing, and communication systems.
Funder
National Key Research and Development Project of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献