Short dual-core GaAs photonic crystal fiber splitter with a broad bandwidth and ultrahigh extinction ratio

Author:

Zeng Yanshu1,Lv Jingwei1,Yang Lin1,Liu Wei1,Yi Zao2ORCID,Liu Qiang1,Hu Chunjie3,Lv Yan1,Chu Paul K.4,Liu Chao1

Affiliation:

1. Northeast Petroleum University

2. Southwest University of Science and Technology

3. The Fourth Affiliated Hospital of Harbin Medical University

4. City University of Hong Kong

Abstract

Microstructured polarization beam splitters (PBSs) have attracted much interest in recent years. Here, a ring double-core photonic crystal fiber (PCB) PSB (PCB-PSB) with an ultrashort, broadband, and high extinction ratio (ER) was designed. The effects of the structural parameters on the properties were analyzed by the finite element method, which revealed that the optimal length of the PSB was 19.08877 µm and the ER was −324.257dB. The operating bandwidth for an ER of less than −20dB is 440 nm, and the wavelength range spans the full E+S+C+L+U band between 1,320 and 1,760 nm. The fault and manufacturing tolerance of the PBS was demonstrated for structural errors of ±1%. Moreover, the influence of temperature on the performance of the PBS was determined and discussed. Our results show that a PBS has excellent potential in optical fiber sensing and optical fiber communications.

Funder

Outstanding young and middle-aged research and innovation team of Northeast Petroleum University

Natural Science Foundation of Heilongjiang Province

China Postdoctoral Science Foundation

City University of Hong Kong Strategic Research Grant

City University of Hong Kong

Scientific Research Fund of Sichuan Province Science and Technology Department

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel high birefringence photonic crystal fiber with high nonlinear;Fourth International Conference on Telecommunications, Optics, and Computer Science (TOCS 2023);2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3