Wafer Eccentricity Deviation Measurement Method Based on Line-Scanning Chromatic Confocal 3D Profiler

Author:

Qu Dingjun123ORCID,Zhou Zuoda123,Li Zhiwei13,Ding Ruizhe123,Jin Wei13,Luo Haiyan123,Xiong Wei123

Affiliation:

1. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China

3. Key Laboratory of Optical Calibration and Characterization of Chinese Academy of Sciences, Hefei 230031, China

Abstract

The wafer eccentricity deviation caused by misalignment between the center of the wafer and rotary table will lead to edge image distortion and quality degradation of the defect signals during automated inspection. However, wafer end jump and edge topography change will bring great challenges to the accurate measurement of micrometer deviations. A new wafer eccentricity deviation measurement method based on line-scanning chromatic confocal sensors (LSCCSs) is proposed. Firstly, the LSCCS with Z-axis submicron resolution used in the experiment acquires the 3D profile height of the wafer edge as the turntable rotates, and the edge distance is calculated at each rotation angle. Secondly, a robust Fourier-LAR fitting method is used to fit edge distance serial to reduce sensitivity to outliers. Finally, the wafer eccentricity deviation that is equal to the wafer center coordinate can be calculated using the wafer eccentricity deviation model. In the simulated experiment, the results show that the eccentricity deviation measurement accuracy was insensitivity to noise and reached the micron level. Additionally, the measurement uncertainty of eccentricity deviation coordinate Xw,Yw was (0.53 µm, 1.4 µm) in the actual data of the 12-inch wafers.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

HFIPS Director’s Fund

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3