Abstract
The ideal quantum key distribution (QKD) protocol requires perfect random numbers for bit encoding and basis selecting. Perfect randomness is of great significance to the practical QKD system. However, due to the imperfection of practical quantum devices, an eavesdropper (Eve) may acquire some random numbers, thus affecting the security of practical systems. In this paper, we analyze the effects of the weak randomness in the measurement-device-independent QKD (MDI-QKD) with finite resources. We analytically derive concise formulas for estimating the lower bound of the single-photon yield and the upper bound of the phase error rate in the case of the weak randomness. The simulation demonstrates that the final secret key rate of MDI-QKD with finite resources is sensitive to state preparation, even with a small proportion of weak randomness, the secure key rate has a noticeable fluctuation. Therefore, the weak randomness of the state preparation may bring additional security risks. In order to ensure the practical security of the QKD system, we are supposed to strengthen the protection of state preparation devices.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
China Postdoctoral Science Foundation
Natural Science Foundation of Henan
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献