Security analysis of measurement-device-independent quantum conference key agreement with weak randomness

Author:

Jiang Xiao-Lei,Wang Yang,Lu Yi-Fei,Li Jia-Ji,Zhang Hai-Long,Jiang Mu-Sheng,Zhou Chun,Bao Wan-Su

Abstract

Quantum conference key agreement (QCKA) allows multiple users to distribute secret conference keys over long distances. Measurement-device-independent QCKA (MDI-QCKA) is an effective QCKA scheme, which closes all detection loopholes and greatly enhances QCKA’s security in practical application. However, an eavesdropper (Eve) may compromise the security of practical systems and acquire conference key information by taking advantage of the weak randomness from the imperfect quantum devices. In this article, we analyze the performance of the MDI-QCKA scheme based on the weak randomness model. Our simulation results show that even a small proportion of weak randomness may lead to a noticeable fluctuation in the conference key rate. For the case with finite-key size, we find that the weak randomness damages the performance of MDI-QCKA to different degrees according to the data size of total pulses transmitted. Furthermore, we infer that QCKA based on single-photon interference technology may perform better in resisting weak randomness vulnerabilities. Our work contributes to the practical security analysis of multiparty quantum communication and takes a further step in the development of quantum networks.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference39 articles.

1. Quantum cryptography: Public key distribution and coin tossing;Bennett,1984

2. Secure quantum key distribution with realistic devices;Xu;Rev Mod Phys,2020

3. Advances in quantum cryptography;Pirandola;Adv Opt Photon,2020

4. Multi-partite quantum cryptographic protocols with noisy ghz states;Chen;Qic,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3