Affiliation:
1. College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China
2. School of Information Science and Technology, Zhengzhou Normal University, Zhengzhou 450044, China
Abstract
In quantum secure multi-party summation protocols, some attackers can impersonate legitimate participants in the summation process, and easily steal the summation results from the participants. This is often overlooked for existing secure multi-party summation protocols, thus rendering them insecure. Based on commutative encryption, a quantum secure multi-party summation protocol with identity authentication is proposed in this paper. In the protocol, each participant encodes a secret integer on photons via unitary operations. At the same time, a one-way hash function technique with a key is utilized to perform identity authentication operations for each participant. Finally, the summation is calculated with the help of a semi-trusted third party. The analysis of the protocol shows that the proposed protocol is correct and resistant to common and impersonation attacks. Compared to related protocols, the use and measurement of single photons makes the protocol easier to implement into existing technology. Furthermore, the simulation experiments on the IBM Q Experience cloud platform demonstrate the effectiveness of the presented protocol.
Funder
National Natural Science Foundation of China
Fujian Province Natural Science Foundation
Program for New Century Excellent Talents in Fujian Province University
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献