Fast Optimization Design of the Flexure for a Space Mirror Based on Mesh Deformation

Author:

Liu Fengchang,Li Wei,Zhao Weiguo,Wang Xiaodong,Wang Xiaoyu

Abstract

According to the requirements of high force-thermal stability and high performance of a space telescope, a space mirror assembly must not be influenced by environmental factors. In this study, a space mirror assembly under load conditions, such as gravity, thermal, and assembly error, is considered. After the mirror is optimized, the surface shape error is reduced by 22%, and the mass is increased by 0.113 kg. In order to improve the efficiency of integration optimization, we present a fast optimization method using mesh deformation to be applied to the flexure. The size parameters of flexure and axial mount position are obtained by optimization. With our method, the single optimization time reduces from 10 min to 40 s, which can improve the efficiency of multi-objective optimization. The mirror assembly is fabricated and assembled based on optimization results. Finite element analysis (FEA) and test results for the space mirror assembly confirm the validity and feasibility of the fast optimization method, and we believe that the flexure based on fast optimization meets the requirements of a space mirror assembly for space applications.

Funder

the Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3