A Review of Lightweight Design for Space Mirror Core Structure: Tradition and Future

Author:

Zhang ChanghaoORCID,Li ZongxuanORCID

Abstract

With the continuous improvement of the imaging quality requirement of the space optical system, the large-aperture mirror becomes the research focus. However, the increase of the aperture will increase the whole weight which results in high launch cost and degrades the mirror surface figure accuracy. Therefore, the lightweight design method of the mirror structure is of great importance. In recent years, many space telescope system schemes have demonstrated the progress of the structural lightweight design of mirrors, such as Spitzer, SOFIA, JWST, etc. This article reviews the main content and innovations of the research on the structural designs of mirrors including conventional machining designs and topology optimization structures. Meanwhile, some emerging designs (e.g., lattices and Voronoi structures) considering additive manufacturing (AM) are also introduced. Several key elements of different structural design approaches for lightweight mirrors are discussed and compared, such as material, lightweight ratio, design methods, surface figure, etc. Finally, future challenges, trends, and prospects of lightweight design for mirrors are discussed. This article provides a reference for further related research and engineering applications.

Funder

Foundation of Key Laboratory of Space-based Dynamic and Rapid Optical Imaging Technology, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3