Multi-Objective Parametric Optimization Design for Mirrors Combined with Non-Dominated Sorting Genetic Algorithm

Author:

Sun Lu12,Zhang Bao12,Wang Ping1,Gan Zhihong1,Han Pengpeng1,Wang Yijian12

Affiliation:

1. Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The process of intelligent multi-objective parametric optimization design for mirrors is discussed in detail in this paper, with the error of the mirror surface shape and the total mass being examined as the optimization objectives. The establishment of complex objective functions for solving the optimization problem of the mirror surface shape error was realized, and manual modification of the model was avoided. Moreover, combining this with a non-dominated sorting genetic algorithm (NSGA) helped the Pareto front move towards an ideal optimal set of solutions. To verify the effectiveness of the proposed method, an aluminum alloy mirror with an aperture of 140 mm was taken as an example. The Pareto optimal solution set of the mass and surface shape error under 1 g gravity was obtained for finding the required solution and satisfying the optimization goal. In addition, this method is applicable to other complex structural design problems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Bao, Q.W. (2016). Lightweight and Optimization Design and Research for the Opto-Mechanical Structure of Off-Axis Space Camera. [Master’s Thesis, University of Chinese Academy of Sciences].

2. Topology and parametric optimization based lightweight design of a space reflective mirror;Liu;Opt. Eng.,2018

3. Optimized design of mirror support structure to reduce surface sensitivity;Jiang;Opt. Eng.,2020

4. Application and Simulation in Fitting Optical Surface with Zernike Polynomial;Yang;Spacecr. Recovery Remote Sens.,2010

5. Treating with surface figure error of mirror/lens by means of Surface equation;Wu;Opt. Precis. Eng.,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3