A Novel Thermal Deformation Self-Stabilization Flexible Connection Mechanism

Author:

Feng Fahui1,Lin Zhihang1ORCID,Tang Hui2ORCID

Affiliation:

1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China

2. School of Engineering, University of Warwick, Coventry CV4 7AL, UK

Abstract

In micro-LED chip repair, a nanopositioner is commonly used to adjust the positioning of the LED chip. However, during the bonding process, the heat generated can cause the positioning system to deform, leading to inaccurate alignment and poor-quality chip repair. To solve this issue, a novel flexible connection structure has been proposed that can eliminate thermal deformation. The principle of this novel flexible connection structure is that the thermal distortion self-elimination performance is achieved via three flexible connection modules (FCM) so that the thermal stress is automatically eliminated. First, the paper introduces the principle of thermal deformation elimination, and then the design and modeling process of the proposed structure are described. A heat transfer model is then developed to determine how temperature is distributed within the structure. A thermal deformation model is established, and the size of the FCM is optimized using a genetic algorithm (GA) to minimize the thermal deformation. Finite element analysis (FEA) is used to simulate and evaluate the thermal distortion self-elimination performance of the optimized mechanism. Finally, experiments are conducted to verify the reliability and accuracy of the simulation results. The simulations and experiments show that the proposed structure can eliminate more than 38% of the thermal deformation, indicating an excellent thermal deformation self-eliminating capability.

Funder

Natural Science Foundation of China

Science and Technology Projects in Guangzhou

State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment

European Unions Horizon 2020 research and innovation program under the Marie Sklodowska-Curie

Engineering Technology Center of Guangdong General University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3