Enhanced Discrete Wavelet Transform–Non-Local Means for Multimode Fiber Optic Vibration Signal

Author:

Peng Zixuan1,Yu Kaimin2ORCID,Zhang Yuanfang1,Zhu Peibin1,Chen Wen1ORCID,Hao Jianzhong3ORCID

Affiliation:

1. School of Ocean Information Engineering, Jimei University, Xiamen 361021, China

2. School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China

3. Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A⋆STAR), Singapore 138632, Singapore

Abstract

Real-time monitoring of heartbeat signals using multimode fiber optic microvibration sensing technology is crucial for diagnosing cardiovascular diseases, but the heartbeat signals are very weak and susceptible to noise interference, leading to inaccurate diagnostic results. In this paper, a combined enhanced discrete wavelet transform (DWT) and non-local mean estimation (NLM) denoising method is proposed to remove noise from heartbeat signals, which adaptively determines the filtering parameters of the DWT-NLM composite method using objective noise reduction quality assessment metrics by denoising different ECG signals from multiple databases with the addition of additive Gaussian white noise (AGW) with different signal-to-noise ratios (SNRs). The noise reduction results are compared with those of NLM, enhanced DWT, and conventional DWT combined with NLM method. The results show that the output SNR of the proposed method is significantly higher than the other methods compared in the range of −5 to 25 dB input SNR. Further, the proposed method is employed for noise reduction of heartbeat signals measured by fiber optic microvibration sensing. It is worth mentioning that the proposed method does not need to obtain the exact noise level, but only the adaptive filtering parameters based on the autocorrelation nature of the denoised signal. This work greatly improves the signal quality of the multimode fiber microvibration sensing system and helps to improve the diagnostic accuracy.

Funder

Natural Science Foundation of Fujian Science and Technology Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3