A Robust Framework Combining Image Processing and Deep Learning Hybrid Model to Classify Cardiovascular Diseases Using a Limited Number of Paper-Based Complex ECG Images

Author:

Fatema KanizORCID,Montaha Sidratul,Rony Md. Awlad HossenORCID,Azam SamiORCID,Hasan Md. ZahidORCID,Jonkman Mirjam

Abstract

Heart disease can be life-threatening if not detected and treated at an early stage. The electrocardiogram (ECG) plays a vital role in classifying cardiovascular diseases, and often physicians and medical researchers examine paper-based ECG images for cardiac diagnosis. An automated heart disease prediction system might help to classify heart diseases accurately at an early stage. This study aims to classify cardiac diseases into five classes with paper-based ECG images using a deep learning approach with the highest possible accuracy and the lowest possible time complexity. This research consists of two approaches. In the first approach, five deep learning models, InceptionV3, ResNet50, MobileNetV2, VGG19, and DenseNet201, are employed. In the second approach, an integrated deep learning model (InRes-106) is introduced, combining InceptionV3 and ResNet50. This model is developed as a deep convolutional neural network capable of extracting hidden and high-level features from images. An ablation study is conducted on the proposed model altering several components and hyperparameters, improving the performance even further. Before training the model, several image pre-processing techniques are employed to remove artifacts and enhance the image quality. Our proposed hybrid InRes-106 model performed best with a testing accuracy of 98.34%. The InceptionV3 model acquired a testing accuracy of 90.56%, the ResNet50 89.63%, the DenseNet201 88.94%, the VGG19 87.87%, and the MobileNetV2 achieved 80.56% testing accuracy. The model is trained with a k-fold cross-validation technique with different k values to evaluate the robustness further. Although the dataset contains a limited number of complex ECG images, our proposed approach, based on various image pre-processing techniques, model fine-tuning, and ablation studies, can effectively diagnose cardiac diseases.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3