Abstract
The electrocardiogram (ECG) provides essential information about various human cardiac conditions. Several studies have investigated this topic in order to detect cardiac abnormalities for prevention purposes. Nowadays, there is an expansion of new smart signal processing methods, such as machine learning and its sub-branches, such as deep learning. These popular techniques help analyze and classify the ECG signal in an efficient way. Our study aims to develop algorithmic models to analyze ECG tracings to predict cardiovascular diseases. The direct impact of this work is to save lives and improve medical care with less expense. As health care and health insurance costs increase in the world, the direct impact of this work is saving lives and improving medical care. We conducted numerous experiments to optimize deep-learning parameters. We found the same validation accuracy value of about 0.95 for both MobileNetV2 and VGG16 algorithms. After implementation on Raspberry Pi, our results showed a small decrease in accuracy (0.94 and 0.90 for MobileNetV2 and VGG16 algorithms, respectively). Therefore, the main purpose of the present research work is to improve, in an easy and cheaper way, real-time monitoring using smart mobile tools (mobile phones, smart watches, connected T-shirts, etc.).
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献