Abstract
Horizontal axis wind turbines are used for energy generation at domestic as well as industrial levels. In the wind turbines, a reduction in drag force and an increase in lift force are desired to increase the energy efficiency. In this research work, computational fluid dynamics (CFD) analysis has been performed on a turbine blade’s frontal section with an NACA S814 profile. The drag force has been reduced by introducing an array of dimpled structures at the blade surface. The dimpled structures generate a turbulent boundary layer flow on its surface that reduces the drag force and modifies the lift force because it has greater momentum than the laminar flow. The simulation results are verified by the experimental results performed in a wind tunnel and are in close harmony with the simulated results. For accurate results, CFD is performed on the blade’s frontal section at the angle of attack (AOA) with a domain of 0° to 80° and at multiple Reynolds numbers. The local attributes, lift force, drag force and pressure coefficient are numerically computed by using the three models on Ansys fluent: the Spalart-Allmaras, the k-epsilon (RNG) and the k-omega shear stress transport (SST).
Funder
National Research Foundation of Korea
Ministry of Science ICT and Future Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献