Abstract
Abstract: This paper reviews the design optimization of wind turbine blades through investigating the design methods and analyzing the performance of the blades. The current research work in this area include wind turbine blade geometric design and optimization, aerodynamics analysis, wind turbine blade structural design and dynamics analysis. Blade geometric design addresses the design parameters, including airfoils and their aerodynamic coefficients, attack angles, design tip speed ratio, design and/or rated wind speed, rotor diameter, blade aerodynamic shape with chord length and twist distributions, so that the blade achieves an optimum powerperformance. The geometry of the blade is an aerodynamic shape with nonlinear chord and twist distribution, which can be obtained based on the BEM theory with respect to given aerofoil with known aerodynamic coefficients. In terms of blade aerodynamics analysis, there are four types of aerodynamic models which can be used to predict the aerodynamic performance of blades, including blade element momentum (BEM) model, lifting panel and vortex model, actuator line model, and computational fluid dynamics (CFD) model. Among the four, computational fluid dynamics (CFD) model has been used to calculate the aerodynamic effect on the bladeairfoil. Critical Reynolds number and constant wind speed has been considered during analysis under different turbulence models Viz, spallart-almaras, k-epsilon, invicid flow. During investigation it is observed that only k- epsilon showed efficient results than others and 14 degree angle of attack (AOA) is the optimum value at which there is much lift coefficient and minimum drag
Publisher
International Journal for Research in Applied Science and Engineering Technology (IJRASET)
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献