Sand-Laden Wind Erosion Pair Experimental Analysis of Aerodynamic Performance of the Wind Turbine Blades

Author:

Wan Daqian1,Chen Songli1,Li Danlan1,Zhen Qi1,Zhang Bo1

Affiliation:

1. School of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

In the Inner Mongolia region, sand and dust storms are prevalent throughout the year, with sand erosion having a particularly significant impact on the performance of wind turbine blades. To enhance the performance stability of wind turbines and reduce operation and maintenance costs, this study delves into the specific impact of sand-laden wind erosion on the aerodynamic performance of scaled-down wooden wind turbine blades. The experiment conducts vehicle-mounted tests on scaled models of 1.5 MW wind turbine blades that have been eroded by wind-sand flows from different zones, analyzing the changes in aerodynamic performance of wind turbines caused by the erosion. The results indicate that with an increase in the angle of installation, both the overall power output and the wind energy utilization coefficient of the wind turbines show a declining trend. The power outputs of both the partially eroded group and the fully eroded group are unable to reach the rated power level of 100 W. Compared to the uneroded group, the leading-edge eroded group demonstrated higher power output and wind energy utilization coefficients across most wind speed ranges. This finding verifies the possibility that the drag-reducing effect caused by pits from leading-edge erosion has a positive impact on the aerodynamic performance of the blades. It also provides a new research perspective and strong evidence for the study of erosion effects on wind turbine blades and the optimization of their aerodynamic performance.

Funder

Basic Research Operating Fund Projects for Colleges and Universities Directly Under the Inner Mongolia Autonomous Region

Inner Mongolia Autonomous Region Natural Science Foundation Joint Fund Project

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3