Online Feature Selection for Robust Classification of the Microbiological Quality of Traditional Vanilla Cream by Means of Multispectral Imaging

Author:

Lianou Alexandra,Mencattini AriannaORCID,Catini AlexandroORCID,Di Natale CorradoORCID,Nychas George-John E.ORCID,Martinelli EugenioORCID,Panagou Efstathios Z.ORCID

Abstract

The performance of an Unsupervised Online feature Selection (UOS) algorithm was investigated for the selection of training features of multispectral images acquired from a dairy product (vanilla cream) stored under isothermal conditions. The selected features were further used as input in a support vector machine (SVM) model with linear kernel for the determination of the microbiological quality of vanilla cream. Model training (n = 65) was based on two batches of cream samples provided directly by the manufacturer and stored at different isothermal conditions (4, 8, 12, and 15 °C), whereas model testing (n = 132) and validation (n = 48) were based on real life conditions by analyzing samples from different retail outlets as well as expired samples from the market. Qualitative analysis was performed for the discrimination of cream samples in two microbiological quality classes based on the values of total viable counts [TVC ≤ 2.0 log CFU/g (fresh samples) and TVC ≥ 6.0 log CFU/g (spoiled samples)]. Results exhibited good performance with an overall accuracy of classification for the two classes of 91.7% for model validation. Further on, the model was extended to include the samples in the TVC range 2–6 log CFU/g, using 1 log step to define the microbiological quality of classes in order to assess the potential of the model to estimate increasing microbial populations. Results demonstrated that high rates of correct classification could be obtained in the range of 2–5 log CFU/g, whereas the percentage of erroneous classification increased in the TVC class (5,6) that was close to the spoilage level of the product. Overall, the results of this study demonstrated that the UOS algorithm in tandem with spectral data acquired from multispectral imaging could be a promising method for real-time assessment of the microbiological quality of vanilla cream samples.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3