The Real-Time Depth Estimation for an Occluded Person Based on a Single Image and OpenPose Method

Author:

Tsai Yu-ShiuanORCID,Hsu Li-Heng,Hsieh Yi-ZengORCID,Lin Shih-SyunORCID

Abstract

In recent years, the breakthrough of neural networks and the rise of deep learning have led to the advancement of machine vision, which has been commonly used in the practical application of image recognition. Automobiles, drones, portable devices, behavior recognition, indoor positioning and many other industries also rely on the integrated application, and require the support of deep learning and machine vision. As for these technologies, there is a high demand for the accuracy related to the recognition of portraits or objects. The recognition of human figures is also a research goal that has drawn great attention in various fields. However, the portrait will be affected by various factors such as height, weight, posture, angle and whether it is covered or not, which affects the accuracy of recognition. This paper applies the application of deep learning to portraits with different poses and angles, especially the actual distance of a single lens for the shadowed portrait (depth estimation), so that it can be used for automatic control of drones in the future. Traditional methods for calculating depth using images are mainly divided into three types: one—single-lens estimation, two—lens estimation, and three—optical band estimation. In view of the fact that both the second and third categories require relatively large and expensive equipment to effectively perform distance calculations, numerous methods for calculating distance using a single lens have recently been produced. However, whether it is the use of traditional “units of distance measurement calibration”, “defocus distance measurement”, or the “three-dimensional grid space messages distance measurement method”, all of these face corresponding difficulties and problems. Additionally, they have to deal with outside disturbances and process the shadowed image. Therefore, under the new research method, OpenPose, which is proposed by Carnegie Mellon University, this paper intends to propose a depth algorithm for a single-lens occluded portrait to estimate the actual portrait distance for different poses, angles of view and obscuration.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empowering robots with social cues: an initiative pose control framework for human–robot interaction;Intelligent Service Robotics;2024-08-01

2. When Taekwondo Meets Artificial Intelligence: The Development of Taekwondo;Applied Sciences;2024-04-07

3. AI-Embedded Motion Sensors for Sports Performance Analytics;2024 IEEE 3rd International Conference on Micro/Nano Sensors for AI, Healthcare, and Robotics (NSENS);2024-03-02

4. Real-time pose estimation and motion tracking for motion performance using deep learning models;Journal of Intelligent Systems;2024-01-01

5. Apply Machine-Learning Model for Clustering Rowing Players;Proceedings of the 2023 12th International Conference on Networks, Communication and Computing;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3