Abstract
In recent years, the breakthrough of neural networks and the rise of deep learning have led to the advancement of machine vision, which has been commonly used in the practical application of image recognition. Automobiles, drones, portable devices, behavior recognition, indoor positioning and many other industries also rely on the integrated application, and require the support of deep learning and machine vision. As for these technologies, there is a high demand for the accuracy related to the recognition of portraits or objects. The recognition of human figures is also a research goal that has drawn great attention in various fields. However, the portrait will be affected by various factors such as height, weight, posture, angle and whether it is covered or not, which affects the accuracy of recognition. This paper applies the application of deep learning to portraits with different poses and angles, especially the actual distance of a single lens for the shadowed portrait (depth estimation), so that it can be used for automatic control of drones in the future. Traditional methods for calculating depth using images are mainly divided into three types: one—single-lens estimation, two—lens estimation, and three—optical band estimation. In view of the fact that both the second and third categories require relatively large and expensive equipment to effectively perform distance calculations, numerous methods for calculating distance using a single lens have recently been produced. However, whether it is the use of traditional “units of distance measurement calibration”, “defocus distance measurement”, or the “three-dimensional grid space messages distance measurement method”, all of these face corresponding difficulties and problems. Additionally, they have to deal with outside disturbances and process the shadowed image. Therefore, under the new research method, OpenPose, which is proposed by Carnegie Mellon University, this paper intends to propose a depth algorithm for a single-lens occluded portrait to estimate the actual portrait distance for different poses, angles of view and obscuration.
Funder
Ministry of Science and Technology, Taiwan
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献