Gas Leakage Source Detection for Li-Ion Batteries by Distributed Sensor Array

Author:

Mateev Valentin,Marinova IlianaORCID,Kartunov Zhelyazko

Abstract

Lithium-based batteries operation is related to some safety risks of dangerous flaming, integrity destruction, or even explosion. Gas leakage is an early and reliable indicator for such irreversible malfunctioning of electrical accumulators. Often, accurate gas emission source location sensing is difficult especially in heavy operational conditions, related to temperature changes, vibrations, movements, accelerations, etc. In this paper we propose a gas detection system, with catalytic type sensor array, and a numerical reconstruction method for precise gas emission source location inside the battery pack. The detection system employs a distributed array of CO sensors. Proposed sensor array configurations significantly reduce the number of sensing nodes inside the battery pack and fewer sensors than the protected battery elements are used. This way, data acquisition process by sensor nodes is also simplified. Several array configurations are considered according to their measurement efficiency and accuracy. Reconstruction algorithm is based on fast interpolation technique very suitable for real-time data processing. Estimation of reconstruction method accuracy is made by computational model of the gas diffusion inside the pack.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3