Synthesis and Characterization of Reproducible Linseed Oil-Loaded Silica Nanoparticles with Potential Use as Oxygen Scavengers in Active Packaging

Author:

Alvarado Juan Felipe,Rozo Daniel Fernando,Chaparro Luis Miguel,Medina Jorge Alberto,Salcedo-Galán FelipeORCID

Abstract

Commercially available oxygen scavengers used to prevent lipid autoxidation, microbial growth and enzymatic browning in food products present several issues, which include the usage of metals and their moisture dependence to work properly. We present the synthesis and characterization of a moisture-independent oil-based oxygen scavenging system comprised of linseed oil and silica nanoparticles. The system was synthesized via sol-gel chemistry and was characterized using morphological analysis (SEM, AFM, TEM, and N2 adsorption/desorption), oil-loading analysis (TGA), and surface analysis (ζ-potential and ATR-FTIR). Performance of the system was evaluated through headspace measurements and reproducibility of synthetic procedure was verified using six replicates. Nanoparticles showed the desired spherical shape with a diameter of (122.7 ± 42.7 nm) and mesoporosity (pore diameter = 3.66 ± 0.08 nm), with an encapsulation efficiency of 33.9 ± 1.5% and a highly negative ζ-potential (−56.1 ± 1.2 mV) in basic solution. Performance of the system showed a promising high value for oxygen absorption of 25.8 ± 4.5 mL O2/g of encapsulated oil (8.3 ± 1.5 mL O2/g of nanocapsules) through a moisture independent mechanism, which suggests that the synthesized system can be used as an oxygen scavenger in dry atmosphere conditions.

Funder

Technology and Knowledge Transfer Office of the Vice Presidency of Research and Creation of Universidad de los Andes

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference58 articles.

1. Oxidation of Lipids in Foods

2. Biological systems;Frankel,2012

3. Ascorbic Acid-Based Oxygen Scavenger in Active Food Packaging System for Raw Meatloaf

4. Oxygen, ethylene and other scavengers;Vermeiren,2003

5. Enzymes for food-packaging applications;Lim,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3