Crown Profile Modeling and Prediction Based on Ensemble Learning

Author:

Chen YulingORCID,Dong Chen,Wu BaoguoORCID

Abstract

Improving prediction accuracy is a prominent modeling issue in relation to forest simulations, and ensemble learning is a new effective method for improving the precision of crown profile model simulations in order to overcome the disadvantages of statistical modeling. Background: Ensemble learning (a machine learning paradigm in which multiple learners are trained to achieve better performance) has strong nonlinear problem learning ability and flexibility in terms of analyzing longitudinal data, and it remains rarely explored so far in the field of crown profile modeling forest science. In this study, we explored the application of ensemble learning to the modeling and prediction of crown profiles. Methods: We evaluated the performance of ensemble learning procedures and marginal model in modeling crown profile using the crown profile database from China fir plantations in Fujian, in southern China. Results: The ensemble learning approach for the crown profile model appeared to have better performance and higher efficiency (R2 > 0.9). The crown equation model 18 showed an intermediate performance in its estimation, whereas GBDT (MAE = 0.3250, MSE = 0.2450) appeared to have the best performance and higher efficiency. Conclusions: The ensemble learning method can combine the advantages of multiple learners and has higher model accuracy, robustness and overall induction ability, and is thus an effective technique for crown profile modeling and prediction.

Funder

Climate-sensitive Stand Biomass Model

Publisher

MDPI AG

Subject

Forestry

Reference79 articles.

1. Forest growth and yield models for intensively managed plantations;Weiskittel,2014

2. Crown profile models based on branch attributes in coastal Douglas-fir

3. An adjustable predictor of crown profile for stand-grown Douglas-fir trees;Hann;For. Sci.,1999

4. A crown profile model for Pinus radiata D. Don in northwestern Spain

5. Modeling Crown Profile of Larix olgensis Trees;Fengri;Sci. Silvae Sin.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3