Deep learning for crown profile modelling of Pinus yunnanensis secondary forests in Southwest China

Author:

Chen Yuling,Wang Jianming

Abstract

Accurate information concerning crown profile is critical in analyzing biological processes and providing a more accurate estimate of carbon balance, which is conducive to sustainable forest management and planning. The similarities between the types of data addressed with LSTM algorithms and crown profile data make a compelling argument for the integration of deep learning into the crown profile modeling. Thus, the aim was to study the application of deep learning method LSTM and its variant algorithms in the crown profile modeling, using the crown profile database from Pinus yunnanensis secondary forests in Yunnan province, in southwest China. Furthermore, the SHAP (SHapley Additive exPlanations) was used to interpret the predictions of ensemble or deep learning models. The results showed that LSTM’s variant algorithms was competitive with traditional Vanila LSTM, but substantially outperformed ensemble learning model LightGBM. Specifically, the proposed Hybrid LSTM-LightGBM and Integrated LSTM-LightGBM have achieved a best forecasting performance on training set and testing set respectively. Furthermore, the feature importance analysis of LightGBM and Vanila LSTM presented that there were more factors that contribute significantly to Vanila LSTM model compared to LightGBM model. This phenomenon can explain why deep learning outperforms ensemble learning when there are more interrelated features.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3