Forest Management Type Identification Based on Stacking Ensemble Learning

Author:

Liu Jiang1ORCID,Chen Jingmin2,Chen Shaozhi3,Wu Keyi1

Affiliation:

1. Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Beijing 100091, China

2. Liaoning Zhanggutai National Nature Reserve Management Center, Fuxin 123100, China

3. Chinese Academy of Forestry, Beijing 100091, China

Abstract

Forest management is the fundamental approach to continuously improve forest quality and achieve the quadruple functions of forests. The identification of forest management types is the basis of forest management and a key technical link in the formulation of forest management plans. However, due to insufficient application of forestry informatization and digitization, there are problems in the organization and application of management types, such as inaccurate identification, diversified standards, long organizational cycles, and low decision-making efficiency. Typical technical models are difficult to widely promote and apply. To address these challenges, this study proposes the Stacking Ensemble Forest Management Type Identification (SEFMTI) method based on Stacking ensemble learning. Initially, four typical forest management types from the sustainable forest management pilot of the Yichun Forestry Group were selected as research subjects, and 19 stand parameters were chosen to form the research data, training various recognition models. Subsequently, the Least Absolute Shrinkage and Selection Operator (LASSO) regression and random forest (RF) methods were used to analyze key decision-making indicators for forest management type recognition and compare the performance of different models. The results show that (1) the SEFMTI model achieved an accuracy rate of 97.14%, effectively improving the accuracy of forest management type recognition while ensuring stability; (2) average age (AG), age group (AGG), crown density (CD), and stand origin (SO) are key decision-making indicators for recognizing forest management types; and (3) after feature selection, the SEFMTI model significantly enhanced the efficiency of model training while maintaining a high accuracy rate. The results validate the feasibility of the SEFMTI identification method, providing a basis for the gradual implementation of sustainable forest management pilots and aiding in the precise improvement of forest quality.

Publisher

MDPI AG

Reference76 articles.

1. Research on theory and technology of forest quality evaluation and precision improvement;Zhang;J. Beijing For. Univ. BJFU,2019

2. Summary on the Development of the Forest Management Plan;Tang;For. Resour. Manag.,2022

3. Division of Working Group of Silviculture and Working Measures Difference;Chen;For. Eng.,2009

4. Classification of Forest Management Approaches: A New Conceptual Framework and Its Applicability to European Forestry;Duncker;Ecol. Soc.,2012

5. When Is a Forest a Forest? Forest Concepts and Definitions in the Era of Forest and Landscape Restoration;Chazdon;Ambio,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3