On the Control of Low-Frequency Audible Noise from Electrical Substations: A Case Study

Author:

Piana Edoardo AlessioORCID,Roozen Nicolaas BernardusORCID

Abstract

With the world facing the urgency of energy transition, the development of efficient and quiet electrical infrastructures is of topical importance in the construction of the environment of the future. The problem of noise from power distribution systems is often underestimated, although several works in the literature underline the effect of disturbance on the population, especially concerning the low frequency range. This paper overviews the issue of the low-frequency noise generated by electrical substations, from the experimental characterization of the source to the possible mitigation measures at the source, along the propagation path and at the receiver. Alongside the general presentation, a case study serves as a practical demonstration of the proposed methodological approach. It was found that in the investigated situation the main disturbance comes from the transformer at two low-frequency harmonics of twice the networking frequency. A traditional noise barrier is designed taking into account the strict size constraints imposed by technical compatibility with the electrical infrastructure, which limits its efficacy at low frequency. Noise masking with broadband signals can be a complementary solution to further reduce noise disturbance and contain it within prescribed limits. The evaluation of subjective response of the receivers to different mitigation solutions is made possible by the availability of the impulse response.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Making the Energy Transition A European Success. Tackling the Democratic, Innovation, Financing and Social Challengers of the Energy Union;Pellerin-Carlin,2017

2. European Energy Transition 2030: The Big Picture;Buck,2019

3. Ten-Year Network Development Plan 2010–2020,2010

4. TYNDP 2018 Executive Report. Connecting Europe: Electricity,2018

5. Resilience-oriented distribution network optimal planning to improve the continuity of power supply

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3