Noise Separation Technique for Enhancing Substation Noise Assessment Using the Phase Conjugation Method

Author:

Fan Shengping1,Liu Jiang2,Li Linyong1,Li Sheng2

Affiliation:

1. Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China

2. School of Naval Architecture, Dalian University of Technology, Dalian 116024, China

Abstract

The intrinsic noise of different transformers in the same substation belongs to the same type of noise, which is strongly coherent and difficult to separate, greatly increasing the cost of substation noise assessment and treatment. To solve the problem, the present paper proposes a noise separation technique using the phase conjugation method to separate the intrinsic noise signals of different transformers: firstly, the reconstruction of sound source information is realized by the phase conjugation method based on the measurement and emission of a line array; secondly, the intrinsic noise signals of the sound source are obtained by the equivalent point source method. The error of the separation technique is analyzed by point source simulation, and the optimal arrangement form of the microphone line array is studied. A validation experiment in a semi-anechoic chamber is also carried out, and the results prove that the error of separation technique is less than 2dBA, which is the error tolerance of engineering applications. Finally, a noise separation test of three transformers is performed in a substation using the proposed technique. The results show that the proposed technique is able to realize the intrinsic noise separation of each transformer in the substation, which is of positive significance for substation noise assessment and management.

Funder

Science and Technology Project of China Southern Power Grid

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3