Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network

Author:

Fan Shengping,Li Jun,Li Linyong,Chu Zhigang

Abstract

The noise pollution caused by urban substations is an increasingly serious problem, as is the issue of local residents being disturbed by substation noise. To accurately assess the degree of noise annoyance caused by substations to surrounding residents, we established a noise annoyance prediction model based on transfer learning and a convolution neural network. Using the model, we took the noise spectrum as the input, the subjective evaluation result as the target output, and the AlexNet network model with a modified output layer and corresponding parameters as the pre-training model. In a fixed learning rate and epoch setting, the influence of different mini-batch size values on the prediction accuracy of the model was compared and analyzed. The results showed that when the mini-batch size was set to 4, 8, 16, and 32, all the data sets had convergence after 90 iterations. The root mean square error (RMSE) of all validation sets was lower than 0.355, and the loss of all validation sets was lower than 0.067. As the mini-batch size increased, the RMSE, loss, and mean absolute error (MAE) of the verification set gradually increased, while the number of iterations and the training duration decreased gradually. In this test, a mini-batch size value of four was appropriate. The resultant convolutional neural network model showed high accuracy and robustness, and the error between the prediction result and the subjective evaluation result was between 2% and 7%. The model comprehensively reflects the objective metrics affecting subjective perception, and accurately describes the subjective perception of urban substation noise on human ears.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3