Semantic Information for Robot Navigation: A Survey

Author:

Crespo JonathanORCID,Castillo Jose CarlosORCID,Mozos Oscar Martinez,Barber RamonORCID

Abstract

There is a growing trend in robotics for implementing behavioural mechanisms based on human psychology, such as the processes associated with thinking. Semantic knowledge has opened new paths in robot navigation, allowing a higher level of abstraction in the representation of information. In contrast with the early years, when navigation relied on geometric navigators that interpreted the environment as a series of accessible areas or later developments that led to the use of graph theory, semantic information has moved robot navigation one step further. This work presents a survey on the concepts, methodologies and techniques that allow including semantic information in robot navigation systems. The techniques involved have to deal with a range of tasks from modelling the environment and building a semantic map, to including methods to learn new concepts and the representation of the knowledge acquired, in many cases through interaction with users. As understanding the environment is essential to achieve high-level navigation, this paper reviews techniques for acquisition of semantic information, paying attention to the two main groups: human-assisted and autonomous techniques. Some state-of-the-art semantic knowledge representations are also studied, including ontologies, cognitive maps and semantic maps. All of this leads to a recent concept, semantic navigation, which integrates the previous topics to generate high-level navigation systems able to deal with real-world complex situations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Robot Semantic Navigation Systems for Indoor Environments;Applied Sciences;2023-12-21

2. Detection and Measurement of Opening and Closing Automatic Sliding Glass Doors;Journal of Robotics and Mechatronics;2023-12-20

3. A Case Study of Semantic Mapping and Planning for Autonomous Robot Navigation;SN Computer Science;2023-12-02

4. Towards Adaptive Environment Perception and Understanding for Autonomous Mobile Robots;2023 IEEE Symposium Sensor Data Fusion and International Conference on Multisensor Fusion and Integration (SDF-MFI);2023-11-27

5. PyraBiNet: A Hybrid Semantic Segmentation Network Combining PVT and BiSeNet for Deformable Objects in Indoor Environments;Communications in Computer and Information Science;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3