Continuous Online Semantic Implicit Representation for Autonomous Ground Robot Navigation in Unstructured Environments

Author:

Serdel Quentin1ORCID,Marzat Julien1ORCID,Moras Julien1ORCID

Affiliation:

1. DTIS, ONERA, Université Paris-Saclay, 91120 Palaiseau, France

Abstract

While mobile ground robots have now the physical capacity of travelling in unstructured challenging environments such as extraterrestrial surfaces or devastated terrains, their safe and efficient autonomous navigation has yet to be improved before entrusting them with complex unsupervised missions in such conditions. Recent advances in machine learning applied to semantic scene understanding and environment representations, coupled with modern embedded computational means and sensors hold promising potential in this matter. This paper therefore introduces the combination of semantic understanding, continuous implicit environment representation and smooth informed path-planning in a new method named COSMAu-Nav. It is specifically dedicated to autonomous ground robot navigation in unstructured environments and adaptable for embedded, real-time usage without requiring any form of telecommunication. Data clustering and Gaussian processes are employed to perform online regression of the environment topography, occupancy and terrain traversability from 3D semantic point clouds while providing an uncertainty modeling. The continuous and differentiable properties of Gaussian processes allow gradient based optimisation to be used for smooth local path-planning with respect to the terrain properties. The proposed pipeline has been evaluated and compared with two reference 3D semantic mapping methods in terms of quality of representation under localisation and semantic segmentation uncertainty using a Gazebo simulation, derived from the 3DRMS dataset. Its computational requirements have been evaluated using the Rellis-3D real world dataset. It has been implemented on a real ground robot and successfully employed for its autonomous navigation in a previously unknown outdoor environment.

Funder

Office National d'Études et de Recherches Aérospatiales

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3