Capturing Eating Behavior from Video Analysis: A Systematic Review

Author:

Tufano MicheleORCID,Lasschuijt MarlouORCID,Chauhan Aneesh,Feskens Edith J. M.ORCID,Camps GuidoORCID

Abstract

Current methods to detect eating behavior events (i.e., bites, chews, and swallows) lack objective measurements, standard procedures, and automation. The video recordings of eating episodes provide a non-invasive and scalable source for automation. Here, we reviewed the current methods to automatically detect eating behavior events from video recordings. According to PRISMA guidelines, publications from 2010–2021 in PubMed, Scopus, ScienceDirect, and Google Scholar were screened through title and abstract, leading to the identification of 277 publications. We screened the full text of 52 publications and included 13 for analysis. We classified the methods in five distinct categories based on their similarities and analyzed their accuracy. Facial landmarks can count bites, chews, and food liking automatically (accuracy: 90%, 60%, 25%). Deep neural networks can detect bites and gesture intake (accuracy: 91%, 86%). The active appearance model can detect chewing (accuracy: 93%), and optical flow can count chews (accuracy: 88%). Video fluoroscopy can track swallows but is currently not suitable beyond clinical settings. The optimal method for automated counts of bites and chews is facial landmarks, although further improvements are required. Future methods should accurately predict bites, chews, and swallows using inexpensive hardware and limited computational capacity. Automatic eating behavior analysis will allow the study of eating behavior and real-time interventions to promote healthy eating behaviors.

Funder

Province of Gelderland—Op Oost—EFRO InToEat

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3