Hydrodynamic Characteristics of Different Undulatory Underwater Swimming Positions Based on Multi-Body Motion Numerical Simulation Method

Author:

Yang Jin,Li Tianzeng,Chen Zhiya,Zuo Chuan,Li Xiaodong

Abstract

The study of hydrodynamic characteristics of swimming is the main way to optimize the swimming movement. The relationship between position, water depth, and swimming performance of undulatory underwater swimming are one of the main concerns of scholars. Therefore, the aim of this study is to analyze the swimming performance of three different undulatory underwater swimming positions under various swimming depths using a numerical simulation method based on multi-body motion. The simulation was conducted using 3D incompressible Navier–Stokes equations using the RNG k-ε turbulence closure equations, and in combination with the VOF method thus that we could include the water surface in our calculations. Different swimming depths based on the distance from the shoulder joint center to the initial water surface were considered. The velocity of the shoulder joint center was captured with a swimming motion monitoring system (KiSwim) and compared with the calculated results. The study found that there was a significant difference in the hydrodynamic characteristics of the three undulatory underwater swimming positions (i.e., the dorsal, lateral, and frontal positions) when swimming near the water surface, and the difference decreased as the swimming depth increased. There was a negative correlation (R(dorsal) = −0.928, R(frontal) = −0.937, R(lateral) = −0.930) between the swimming velocities of the three undulatory underwater swimming positions and the water depth (water depth = 0.2–0.7 m) and that the lateral position had the greatest average velocity. Therefore, it is recommended that swimmers travel at least 0.5 m below the water surface in any undulatory underwater swimming position in order to avoid excessive drag forces. As the swimmer approaches the water surface, the lateral position is worth considering, which has better velocity and hydrodynamic advantage than the other two undulatory underwater swimming positions.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference39 articles.

1. Relationships between kinematics and undulatory underwater swimming performance

2. Simulations of dolphin kick swimming using smoothed particle hydrodynamics

3. Modeling of Lower Extremity Forces in the Dolphin Kick;Jensen,1979

4. Computational fluid dynamics: An analytical tool for the 21st century swimming scientist;Bixler;J. Swim. Res.,1996

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3