The Effect of the Swimmer’s Trunk Oscillation on Dolphin Kick Performance Using a Computational Method with Multi-Body Motion: A Case Study

Author:

Chen Zhiya,Li Tianzeng,Yang JinORCID,Zuo Chuan

Abstract

The effect of a specific Chinese swimmer’s trunk oscillation on dolphin kick was investigated in order to optimize competitive swimming movement. Using a numerical simulation method based on multi-body motion, different swimmer’s trunk oscillation during a dolphin kick was analyzed. The simulation was conducted using 3D incompressible Navier–Stokes equations and renormalization group k-ε turbulence model, combined with the Volume of Fluid method to capture the water surface. The simulation’s results were evaluated by comparing them with experimental data and with previous studies. The net streamwise forces, mean swimming velocity, and joint moments were also investigated. There was a positive correlation between the mean swimming velocity and the amplitudes of the swimmer’s trunk oscillation, where the Pearson correlation coefficient was 0.986 and the selected model was statistically significant (p < 0.05). In addition, as the mean swimming velocity increased from 1.42 m/s in Variant 1 to 2 m/s in Variant 5, the maximum positive moments of joints increased by about 24.7% for the ankles, 27.4% for the knees, −3.9% for the hips, and 5.8% for the upper waist, whereas the maximum negative moments of joints increased by about 64.5% for the ankles, 28.1% for the knees, 23.1% for the hips, and 10.1% for the upper waist. The relationship between the trunk oscillation and the vortices was also investigated. Therefore, it is recommended that swimmers should try to increase the amplitudes of trunk oscillation to increase their swimming velocity. In order to achieve this goal, swimmers should increase strength training for the ankles, knees, and upper waist during the upkick. Moreover, extra strength training is warranted for the ankles, knees, hips, and upper waist during the downkick.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3