Understanding the Kinematic Profile of 2 Underwater Pullout Breaststroke Techniques

Author:

Santos Catarina C.123ORCID,Ferreira Francisco A.1ORCID,Soares Susana14ORCID,Fernandes Ricardo J.14ORCID,Vilas-Boas João Paulo14ORCID,Costa Mário J.14ORCID

Affiliation:

1. Center of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal

2. Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Vila Real, Portugal

3. Department of Sport Sciences, Higher Institute of Educational Sciences of the Douro (ISCE-Douro), Penafiel, Portugal

4. Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal

Abstract

Purpose: To compare the kinematic profile of 2 underwater pullout breaststroke techniques. Methods: Sixteen swimmers (9 men, 20.67 [2.71] y old; 7 women, 18.86 [0.83] y old) performed 3 × 25-m breaststroke using 2 pullout breaststroke techniques: Fly-Kick first and Combined. A speedometer was used to assess the peak and the mean velocity during the glide, propulsion, and recovery phases of both techniques, as well as for the total underwater sequence. The underwater distance was retrieved from video footage and was considered for each pullout technique. The range of motion of the knee during the fly-kick was also retrieved, and the time to complete the 25 m was considered the performance outcome, accompanied by the mean velocity, stroke rate, stroke length, and stroke index. Results: Velocity–time series showed different profiles between pullout techniques (P ≤ .05) mostly in the glide and propulsion phases for males and females, respectively. The mean velocity of 25 m was shown to be greater in females when using the Fly-Kick first technique (P = .05, d = 0.36). Greater values in total underwater distance and knee range of motion were also observed for this technique in both cohorts. Conclusions: Female swimmers presented a higher performance when using the Fly-Kick first technique. Different kinematic profiles arise when swimmers use different underwater pullout techniques where the Fly-Kick first may allow them to reach higher kinematical standard.

Publisher

Human Kinetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3