An In Vitro Analysis on Polyurethane Foam Blocks of the Insertion Torque (IT) Values, Removal Torque Values (RTVs), and Resonance Frequency Analysis (RFA) Values in Tapered and Cylindrical Implants

Author:

Comuzzi Luca,Tumedei MargheritaORCID,D’Arcangelo Camillo,Piattelli Adriano,Iezzi Giovanna

Abstract

Background: Several different dental implant microgeometries have been investigated in the literature for use in low-density bone sites. The polyurethane solid rigid blocks represent an optimal in vitro study model for dental implants, because their composition is characterized by symmetrical linear chains of monomers of hexa-methylene sequences producing a self-polymerization process. The aim of the present investigation was to evaluate the primary stability of cylindrical and tapered implants positioned into low-density polyurethane solid rigid blocks. Materials and Methods: Two different macrogeometries, cylindrical (4 mm diameter and 10 mm length) and tapered dental implants (4.20 mm diameter and 10 mm length), were investigated in the present study. The implants were inserted into 10 PCF and 20 PCF polyurethane blocks, with and without an additional cortical layer. The insertion torque (IT) values, the removal torque values (RTVs), and the resonance frequency analysis (RFA) values were measured and recorded. Results: A total of 80 sites were tested, and a significant increased primary stability (PS) was detected in favour of tapered dental implants when compared to cylindrical implants in all experimental conditions (p < 0.05). Higher IT, RT, and RFA values were measured in tapered implants in 10 and 20 PCF polyurethane blocks, both with and without the additional cortical layer. Conclusions: Both implants showed sufficient primary stability in poor density substrates, while, on the other hand, the tapered microgeometry showed characteristics that could also lead to clinical application in low-density posterior maxillary sites, even with a drastically decreased bone cortical component.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3