The Effect of Green Software: A Study of Impact Factors on the Correctness of Software

Author:

Gil David,Fernández-Alemán Jose,Trujillo Juan,García-Mateos Ginés,Luján-Mora SergioORCID,Toval Ambrosio

Abstract

Unfortunately, sustainability is an issue very poorly used when developing software and hardware systems. Lately, and in order to contribute to the earth sustainability, a new concept emerged named Green software which is computer software that can be developed and used efficiently and effectively with minimal or no impact to the environment. Currently, new teaching methods based on students’ learning process are being developed in the European Higher Education Area. Most of them are oriented to promote students’ interest in the course’s contents and offer personalized feedback. Online judging is a promising method for encouraging students’ participation in the e-learning process, although it still has to be researched and developed to be widely used and in a more efficient way. The great amount of data available in an online judging tool provides the possibility of exploring some of the most indicative attributes (e.g., running time, memory) for learning programming concepts, techniques and languages. So far, the most applied methods for automatically gathering information from the judging systems are based on statistical methods and, although providing reasonable correlations, these methods have not been proven to provide enough information for predicting grades when dealing with a huge amount of data. Therefore, the great novelty of this paper is to develop a data mining approach to predict program correctness as well as the grades of the students’ practices. For this purpose, powerful data mining technologies taken from the artificial intelligence domain have been used. In particular, in this study, we have used logistic regression, decision trees, artificial neural network and support vector machines; which have been properly identified as the most suitable ones for predicting activities in the e-learning domains. The results have achieved an accuracy of around 74%, both in the prediction of the program correctness as well as in the practice grades’ prediction. Another relevant issue provided in this paper is a comparison among these four techniques to obtain the best accuracy in predicting grades based on the availability of data as well as their taxonomy. The Decision Trees classifier has obtained the best confusion matrix, and time and memory efficiency were identified as the most important predictor variables. In view of these results, we can conclude that the development of green software leads programmers to implement correct software.

Funder

Ministerio de Economía y Competitividad

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference90 articles.

1. Transforming Our World: The 2030 Agenda for Sustainable Development https://sustainabledevelopment.un.org/post2015/transformingourworld/publication

2. The role of information and communication technology (ICT) in mobilization of sustainable development knowledge: a quantitative evaluation

3. The Role of ICT to Achieve the UN Sustainable Development Goals (SDG)

4. Why ICTs are Critical for Sustainable Development https://news.itu.int/icts-are-critical-for-sustainable-development/

5. ICT and Green Sustainability Research and Teaching

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3