Optimization of the Fuzzy Matter Element Method for Predicting Species Suitability Distribution Based on Environmental Data

Author:

Zhang Quanzhong,Wei Haiyan,Zhao Zefang,Liu Jing,Ran Qiao,Yu Junhong,Gu WeiORCID

Abstract

Over the years, with the efforts of many researchers, the field of species distribution model (SDM) has been well explored. The model of fuzzy matter elements (FME), which, combined with GIS to predict species distribution, has received extensive attention since its emergence. Based on previous studies, this paper improved FME, extended the scope of the membership degree and habitat suitability index, and explored the unsuitable areas of species. We have enhanced the limitation effect of key variables on species habitats, making the operation of FME more consistent with biological laws. By optimizing the FME, it could avoid the accumulation of predicted errors with multi-variables, and make the predicted results more reasonable. In this study, Gynostemma pentaphyllum (Thunb.) Makino was used as an example. The experimental process used several major environmental variables (climate, soil, and terrain variables) to predict the habitat suitability distribution of G. pentaphyllum in China for its current and future period, which includes the period of 2050s (average for 2041–2060) and 2070s (average for 2061–2080) under representative concentration pathways 4.5 (RCP4.5). The results of the analysis showed that the model performed well with a high accuracy by reducing the redundancy of the environmental data. The study could relieve the reliance on a large database of environmental information and propose a new approach for protecting the G. pentaphyllum in unsuitable areas under climate change.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3