ClimateDT: A Global Scale-Free Dynamic Downscaling Portal for Historic and Future Climate Data

Author:

Marchi Maurizio1ORCID,Bucci Gabriele1ORCID,Iovieno Paolo1ORCID,Ray Duncan2ORCID

Affiliation:

1. CNR—Institute of Biosciences and BioResources, Florence Research Area, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy

2. Centre for Forest Management, Forest Research (FR), Roslin EH25 9SY, Midlothian, UK

Abstract

Statistical downscaling of climate data has been widely described in the literature, with the aim of improving the reliability of local climatic parameters from coarse-resolution (often >20 km) global datasets. In this article, we present ClimateDT, a dynamic downscaling web tool for monthly historical and future time series at a global scale. The core of ClimateDT is the 1 km 1981–2010 climatology from CHELSA Climate (version 2.1), where the CRU-TS layers for the period 1901-current are overlayed to generate a historic time series. ClimateDT also provides future scenarios from CMIP5 using UKCP18 projections (rcp2.6 and rcp8.5) and CMIP6 using 5 GCMs, also available on the CHELSA website. The system can downscale the grids using a dynamic approach (scale-free) by computing a local environmental lapse rate for each location as an adjustment for spatial interpolation. Local predictions of temperature and precipitation obtained by ClimateDT were compared with climate time series assembled from 12,000 meteorological stations, and the Mean Absolute Error (MAE) and the explained variance (R2) were used as indicators of performance. The average MAEs for monthly values on the whole temporal scale (1901–2022) were around 1.26 °C for the maximum monthly temperature, 0.80 °C for the average monthly temperature, and 1.32 °C for the minimum monthly temperature. Regarding monthly total precipitation, the average MAE was 19 mm. As for the proportion of variance explained, average R2 values were always greater than 0.95 for temperatures and around 0.70 for precipitation due to the different degrees of temporal autocorrelation of precipitation data across time and space, which makes the estimation more complex. The elevation adjustment resulted in very accurate estimates in mountainous regions and areas with complex topography and substantially improved the local climatic parameter estimations in the downscaling process. Since its first release in November 2022, more than 1300 submissions have been processed. It takes less than 2 min to calculate 45 locations and around 8 min for the full dataset (512 records).

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3