Evaluating genomic offset predictions in a forest tree with high population genetic structure

Author:

Archambeau JulietteORCID,Benito-Garzón MartaORCID,de-Miguel MarinaORCID,Changenet AlexandreORCID,Bagnoli FrancescaORCID,Barraquand FrédéricORCID,Marchi MaurizioORCID,Vendramin Giovanni G.ORCID,Cavers StephenORCID,Perry AnnikaORCID,González-Martínez Santiago C.ORCID

Abstract

AbstractPredicting how tree populations will respond to climate change is an urgent societal concern. An increasingly popular way to make such predictions is the genomic offset (GO) approach, which aims to use genomic and climate data to identify populations that may experience climate maladaptation in the near future. More precisely, GO tries to represent the change in allele frequencies required to maintain the current gene-climate relationships under climate change. However, the GO approach has major limitations and, despite promising validation of its predictions using height data from common gardens, it still lacks broad empirical testing. In the present study, we evaluated the consistency and empirical validity of GO predictions in maritime pine (Pinus pinasterAit.), a tree species from southwestern Europe and North Africa with a marked population genetic structure. First, gene-climate relationships were estimated using 9,817 SNPs genotyped in 454 trees from 34 populations; and candidate SNPs potentially involved in climate adaptation were identified. Second, GO was predicted using four methods, namely Gradient Forest (GF), Redundancy Analysis (RDA), latent factor mixed model (LFMM) and Generalised Dissimilarity Modeling (GDM), two sets of SNPs (candidate and control SNPs) and five climate general circulation models (GCMs) to account for uncertainty in future climate predictions. Last, the empirical validity of GO predictions was evaluated within a Bayesian framework by estimating the associations between GO predictions and two independent data sources: mortality data from National Forest Inventories (NFI), and mortality and height data from five common gardens in contrasting environments. We found high variability in GO predictions across methods, SNP sets and GCMs. Regarding validation, GO predictions with GDM and GF (and to a lesser extent RDA) based on the candidate SNPs showed the strongest and most consistent associations with mortality rates in common gardens and NFI plots. We found almost no association between GO predictions and tree height in common gardens, most likely due to the overwhelming effect of population genetic structure on tree height in this species. Our study demonstrates the imperative to validate GO predictions with a range of independent data sources before they can be used as informative and reliable metrics in conservation or management strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3