Reducing Waste in 3D Printing Using a Neural Network Based on an Own Elbow Exoskeleton

Author:

Rojek IzabelaORCID,Mikołajewski DariuszORCID,Kopowski JakubORCID,Kotlarz PiotrORCID,Piechowiak MaciejORCID,Dostatni EwaORCID

Abstract

Traditional rehabilitation systems are evolving into advanced systems that enhance and improve rehabilitation techniques and physical exercise. The reliable assessment and robotic support of the upper limb joints provided by the presented elbow exoskeleton are important clinical goals in early rehabilitation after stroke and other neurological disorders. This allows for not only the support of activities of daily living, but also prevention of the progression neuromuscular pathology through proactive physiotherapy toward functional recovery. The prices of plastics are rising very quickly, as is their consumption, so it makes sense to optimize three dimensional (3D) printing procedures through, for example, improved artificial intelligence-based (AI-based) design or injection simulation, which reduces the use of filament, saves material, reduces waste, and reduces environmental impact. The time and cost savings will not reduce the high quality of the products and can provide a competitive advantage, especially in the case of thinly designed mass products. AI-based optimization allows for one free print after every 6.67 prints (i.e., from materials that were previously wasted).

Funder

Kazimierz Wielki University in Bydgoszcz, Poznan University of Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3