Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living

Author:

Xiloyannis Michele1,Cappello Leonardo2,Binh Khanh D3,Antuvan Chris W3,Masia Lorenzo3

Affiliation:

1. Robotics Research Centre, Interdisciplinary Graduate School, Nanyang Technological University, Singapore

2. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA

3. Robotics Research Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

Abstract

The development of a portable assistive device to aid patients affected by neuromuscular disorders has been the ultimate goal of assistive robots since the late 1960s. Despite significant advances in recent decades, traditional rigid exoskeletons are constrained by limited portability, safety, ergonomics, autonomy and, most of all, cost. In this study, we present the design and control of a soft, textile-based exosuit for assisting elbow flexion/extension and hand open/close. We describe a model-based design, characterisation and testing of two independent actuator modules for the elbow and hand, respectively. Both actuators drive a set of artificial tendons, routed through the exosuit along specific load paths, that apply torques to the human joints by means of anchor points. Key features in our design are under-actuation and the use of electromagnetic clutches to unload the motors during static posture. These two aspects, along with the use of 3D printed components and off-the-shelf fabric materials, contribute to cut down the power requirements, mass and overall cost of the system, making it a more likely candidate for daily use and enlarging its target population. Low-level control is accomplished by a computationally efficient machine learning algorithm that derives the system’s model from sensory data, ensuring high tracking accuracy despite the uncertainties deriving from its soft architecture. The resulting system is a low-profile, low-cost and wearable exosuit designed to intuitively assist the wearer in activities of daily living.

Publisher

SAGE Publications

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3