Affiliation:
1. Faculty of Science & Technology, Bournemouth University, Poole, UK
Abstract
Intensive and adaptive rehabilitation therapy is beneficial for post-stroke recovery. Three modes of rehabilitation are generally performed at different stages after stroke: external force-based control in the acute stage, assistive force-based rehabilitation in the midway of recovery and resistive force-based rehabilitation in the last stage. To achieve the above requirements, an innovative elbow exoskeleton has been developed to incorporate the three modes of rehabilitation in a single structure. The structure of the exoskeleton has been designed in such a way that the whole working region is divided into three where each region can provide a different mode of rehabilitation. Recovery rate can be varied for individuals since it depends on various parameters. To evaluate the rate of recovery, three joint parameters have been identified: range of angular movement, angular velocity and joint torque. These parameters are incorporated into the framework of planning a novel rehabilitation strategy, which is discussed in this article along with the structural description of the designed exoskeleton.
Subject
Mechanical Engineering,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献