Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective

Author:

Revollar S.ORCID,Vilanova R.ORCID,Vega P.,Francisco M.,Meneses M.

Abstract

In this paper, a control approach for improving the overall efficiency of a wastewater treatment plant (WWTP) is presented. It consists of a cascaded control system that uses a global performance indicator as the controlled variable to drive the plant to operating conditions that satisfies trade-offs involved in the WWTP operation, improving the global performance of the plant. The selected global performance indicator is the N/E index that measures the ratio between the amount of nitrogenated compounds eliminated (kgN) and the energy (kWh) required to achieve that goal. This index links the variables of the activated sludge process with the energy consumed in the whole plant, thus the control strategy takes actions based on plantwide considerations. An external Proportional Integral (PI) controller changes the DO set point according to the N/E index and the basic dissolved oxygen (DO) control scheme in the activated sludge process follows this reference changes varying the aeration intensity. An outer loop with an event-based controller is used to compute the index values when the DO concentration is driven to excessively low limits, preventing long operation periods in this undesirable condition. Simple proportional integral controllers (PI) are used to adapt the strategy to the automation systems available in WWTPs. The implementation in the Benchmark Simulation Model 2 (BSM2) demonstrates the potential of the proposed approach. The results show the possibilities of the N/E index to be used as an indicator of global performance of WWTPs. It provides a link between water line objectives and energy consumption in the whole plant that can be exploited to introduce plantwide considerations in alternative control strategies formulated to drive the plant to operating conditions that optimize the overall process efficiency.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3