Optimizing wastewater treatment plants with advanced feature selection and sensor technologies

Author:

Timiraos Míriam1,Águila Jesús F2,Arce Elena3,Núñez Moisés Alberto GarcÍa4,Zayas-Gato Francisco5,Quintián Héctor6

Affiliation:

1. Department of Industrial Engineering , University of A Coruña, CTC, Ferrol, 15071 A Coruña, Spain; Department of Water Technologies, Fundación Instituto Tecnológico de Galicia, National Technological Center, 15003, A Coruña, Spain, miriam.timiraos.diaz@udc.es

2. Department of Water Technologies , Fundación Instituto Tecnológico de Galicia, National Technological Center, 15003, A Coruña, Spain, jfernandez@itg.es

3. Department of Industrial Engineering , University of A Coruña, CTC, Ferrol, 15071 A Coruña, Spain, elena.arce@udc.es

4. Department of Enterprise , Faculty of Labour Sciences, University of A Coruña, Calle San Ramón s/n, 15403, A Coruña, Spain, moises.alberto.garcia@udc.es

5. Department of Industrial Engineering , University of A Coruña, CTC, Ferrol, 15071 A Coruña, Spain; University of A Coruña, CITIC, Campus de Elviña, 15071 A Coruña, Spain, f.zayas.gato@udc.es

6. Department of Industrial Engineering , University of A Coruña, CTC, Ferrol, 15071 A Coruña, Spain; University of A Coruña, CITIC, Campus de Elviña, 15071 A Coruña, Spain, hector.quintian@udc.es

Abstract

Abstract This research establishes a foundational framework for the development of virtual sensors and provides significant preliminary results. Our study specifically focuses on identifying the key factors essential for accurately predicting total nitrogen in the effluent of wastewater treatment plants. This contribution enhances the predictive capabilities and operational efficiency of these plants, demonstrating the practical benefits of integrating advanced feature selection methods and innovative sensor technologies. These findings provide crucial insights and pave the way for future advancements in the field. In this study, four different feature selection methods are employed to comprehensively explore the variables influencing total nitrogen predictions. The effectiveness of these methods is then evaluated by applying three regression techniques. The findings indicate acceptable levels of accuracy in all applied cases, with one method demonstrating particularly promising results, applicable to several wastewater treatment plants. This validation of the selected variables not only underlines their effectiveness, but also lays the foundation for future virtual sensor applications. The integration of such sensors promises to improve the accuracy and reliability of predictions, marking a significant advance in wastewater treatment plant instrumentation.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3