MFCC Selection by LASSO for Honey Bee Classification

Author:

Libal Urszula1ORCID,Biernacki Pawel1ORCID

Affiliation:

1. Department of Acoustics, Multimedia and Signal Processing, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland

Abstract

The recent advances in smart beekeeping focus on remote solutions for bee colony monitoring and applying machine learning techniques for automatic decision making. One of the main applications is a swarming alarm, allowing beekeepers to prevent the bee colony from leaving their hive. Swarming is a naturally occurring phenomenon, mainly during late spring and early summer, but it is extremely hard to predict its exact time since it is highly dependent on many factors, including weather. Prevention from swarming is the most effective way to keep bee colonies; however, it requires constant monitoring by the beekeeper. Drone bees do not survive the winter and they occur in colonies seasonally with a peak in late spring, which is associated with the creation of drone congregation areas, where mating with young queens takes place. The paper presents a method of early swarming mood detection based on the observation of drone bee activity near the entrance to a hive. Audio recordings are represented by Mel Frequency Cepstral Coefficients and their first and second derivatives. The study investigates which MFCC coefficients, selected by the Least Absolute Shrinkage and Selection Operator, are significant for the worker bee and drone bee classification task. The classification results, obtained by an autoencoder neural network, allow to improve the detection performance, achieving accuracy slightly above 95% for the chosen set of signal features, selected by the proposed method, compared to the standard set of MFCC coefficients with only up to 90% accuracy.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3