Design and Development of Energy Efficient Algorithm for Smart Beekeeping Device to Device Communication Based on Data Aggregation Techniques

Author:

Ntawuzumunsi Elias1ORCID,Kumaran Santhi2,Sibomana Louis3ORCID,Mtonga Kambombo4

Affiliation:

1. African Center of Excellence in Internet of Things (ACEIoT), College of Science and Technology, University of Rwanda, Kigali 4285, Rwanda

2. Department of Computer Engineering, School of ICT, Copperbelt University, Kitwe 21692, Zambia

3. National Council of Science and Technology (NCST), Kigali 20093, Rwanda

4. Education & Training Development Consulting, Lilongwe 207201, Malawi

Abstract

Bees, like other insects, indirectly contribute to job creation, food security, and poverty reduction. However, across many parts of the world, bee populations are in decline, affecting crop yields due to reduced pollination and ultimately impacting human nutrition. Technology holds promise for countering the impacts of human activities and climatic change on bees’ survival and honey production. However, considering that smart beekeeping activities mostly operate in remote areas where the use of grid power is inaccessible and the use of batteries to power is not feasible, there is thus a need for such systems to be energy efficient. This work explores the integration of device-to-device communication with 5G technology as a solution to overcome the energy and throughput concerns in smart beekeeping technology. Mobile-based device-to-device communication facilitates devices to communicate directly without the need of immediate infrastructure. This type of communication offers advantages in terms of delay reduction, increased throughput, and reduced energy consumption. The faster data transmission capabilities and low-power modes of 5G networks would significantly enhance the energy efficiency during the system’s idle or standby states. Additionally, the paper analyzes the application of both the discovery and communication services offered by 5G in device-to-device-based smart bee farming. A novel, energy-efficient algorithm for smart beekeeping was developed using data integration and data scheduling and its performance was compared to existing algorithms. The simulation results demonstrated that the proposed smart beekeeping device-to-device communication with data integration guarantees a good quality of service while enhancing energy efficiency.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3