Non-Intrusive System for Honeybee Recognition Based on Audio Signals and Maximum Likelihood Classification by Autoencoder

Author:

Libal Urszula1ORCID,Biernacki Pawel1ORCID

Affiliation:

1. Department of Acoustics, Multimedia and Signal Processing, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland

Abstract

Artificial intelligence and Internet of Things are playing an increasingly important role in monitoring beehives. In this paper, we propose a method for automatic recognition of honeybee type by analyzing the sound generated by worker bees and drone bees during their flight close to an entrance to a beehive. We conducted a wide comparative study to determine the most effective preprocessing of audio signals for the detection problem. We compared the results for several different methods for signal representation in the frequency domain, including mel-frequency cepstral coefficients (MFCCs), gammatone cepstral coefficients (GTCCs), the multiple signal classification method (MUSIC) and parametric estimation of power spectral density (PSD) by the Burg algorithm. The coefficients serve as inputs for an autoencoder neural network to discriminate drone bees from worker bees. The classification is based on the reconstruction error of the signal representations produced by the autoencoder. We propose a novel approach to class separation by the autoencoder neural network with various thresholds between decision areas, including the maximum likelihood threshold for the reconstruction error. By classifying real-life signals, we demonstrated that it is possible to differentiate drone bees and worker bees based solely on audio signals. The attained level of detection accuracy enables the creation of an efficient automatic system for beekeepers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3