Temperature Prediction of a Temperature-Controlled Container with Cold Energy Storage System Based on Long Short-Term Memory Neural Network

Author:

Guo Jiaming123,Liu Dongfeng12,Lin Shitao12,Lin Jicheng12,Zhen Wenbin12

Affiliation:

1. College of Engineering, South China Agricultural University, Guangzhou 510642, China

2. Key Laboratory of Key Technology of Southern Agricultural Machinery and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China

3. Maoming Branch Center of Lingnan Modern Agricultural Science and Technology Guangdong Laboratory, Maoming 525000, China

Abstract

Temperature prediction is important for controlling the environment in the preservation of fresh products. The phase change materials for cold storage make the heat transfer process complex, and the use of physical models for characterization and temperature prediction can be challenging. In order to predict the variation of the thermal environment in a temperature-controlled container with a cold energy storage system, we propose an LSTM model based on historical temperature data in which the trends of temperature variations of the fresh-keeping area, the phase change material (PCM), and the fresh products can be predicted immediately without considering the complex heat transfer process. An experimental platform of a temperature-controlled container with a cold energy storage system is built to obtain the experimental data for the prediction model’s construction and validation. The prediction results based on the LSTM model are compared to the results of a physical model. In order to optimize the input data for better prediction performance, the proportion of input samples from the dataset is set to 80%, 50%, 20%, and 10%. The prediction results from different input groups are compared and analyzed. The results show that the LSTM model is able to accurately predict temperature variations of the fresh-keeping area and products, and the predicted values are in agreement with the actual values. The LSTM-based prediction model has a higher accuracy compared to the physical-based prediction model; the RMSE, MAE, and MAPE are 0.105, 0.103, and 0.010, respectively, and the relative error for the prediction of effective control hours of environmental temperature is 0.92%. It is suggested to use the initial 20% of the historical temperature data as the input to predict the future temperature variation for better prediction performance. The results of this paper offer valuable insights for accurate temperature prediction in the fresh-keeping environment with a cold energy storage system.

Funder

Guangdong Province 2019 Provincial Agricultural Science and Technology Innovation and Extension Project

Innovative Team for Common Key Technology Research and Development of Agricultural Product Freshness and Logistics

National Science Foundation of China

Maoming Laboratory Autonomous Scientific Research Project

Natural Science Foundation of Guangdong Province

topics of R&D in Key Areas of Guangzhou Municipality

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3