Effect of the Ammonium Tungsten Precursor Solution with the Modification of Glycerol on Wide Band Gap WO3 Thin Film and Its Electrochromic Properties

Author:

Liu Jinxiang,Zhang Guanguang,Guo Kaiyue,Guo Dong,Shi Muyang,Ning HonglongORCID,Qiu Tian,Chen Junlong,Fu Xiao,Yao RihuiORCID,Peng Junbiao

Abstract

Tungsten trioxide (WO3) is a wide band gap semiconductor material, which is commonly not only used, but also investigated as a significant electrochromic layer in electrochromic devices. WO3 films have been prepared by inorganic and sol-gel free ammonium tungstate ((NH4)2WO4), with the modification of glycerol using the spin coating technique. The surface tension, the contact angle and the dynamic viscosity of the precursor solutions demonstrated that the sample solution with a 25% volume fraction of glycerol was optimal, which was equipped to facilitate the growth of WO3 films. The thermal gravimetric and differential scanning calorimetry (TG-DSC) analysis represented that the optimal sample solution transformed into the WO3 range from 220 °C to 300 °C, and the transformation of the phase structure of WO3 was taken above 300 °C. Fourier transform infrared spectroscopy (FT-IR) spectra analysis indicated that the composition within the film was WO3 above the 300 °C annealing temperature, and the component content of WO3 was increased with the increase in the annealing temperature. The X-ray diffraction (XRD) pattern revealed that WO3 films were available for the formation of the cubic and monoclinic crystal structure at 400 °C, and were preferential for growing monoclinic WO3 when annealed at 500 °C. Atomic force microscope (AFM) images showed that WO3 films prepared using ammonium tungstate with modification of the glycerol possessed less rough surface roughness in comparison with the sol-gel-prepared films. An ultraviolet spectrophotometer (UV) demonstrated that the sample solution which had been annealed at 400 °C obtained a high electrochromic modulation ability roughly 40% at 700 nm wavelength, as well as the optical band gap (Eg) of the WO3 films ranged from 3.48 eV to 3.37 eV with the annealing temperature increasing.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

National College Students' Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3